注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

亿能部落格---观察思维比思维本身更重要

我是回来地球补课的!

 
 
 

日志

 
 
关于我

光行者的存在不在于他们真的能唤醒人类或者改变人类,而在于人类世界走向几近崩溃的时候能够站出来建立一套持久永恒的生活模式。

网易考拉推荐

混沌蝴蝶——洛伦兹吸引子  

2013-05-17 13:14:56|  分类: 混沌启示录 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

混沌蝴蝶——洛伦兹吸引子

归档于: 基础科学, 数理科学 @ 10:48 pm

美国气象学家洛伦兹(E.N.Lorenz,不要和提出洛伦兹变换的那位搞混)是混沌理论的奠基者之一。20世纪50年代末到60年代初,他的主要工作目标是从理论上进行长期天气预报研究。他在使用计算机模拟天气时意外发现,对于天气系统,哪怕初始条件的微小改变也会显著影响运算结果。随后,他在同事工作的基础上化简了自己先前的模型,得到了有3个变量的一阶微分方程组,由它描述的运动中存在一个奇异吸引子,即洛伦兹吸引子。

洛伦兹的工作结果最初在1963年发表,论文题目为Deterministic Nonperiodic Flow,发表在Journal of the Atmospheric Sciences杂志上。如今,这一方程组已成为混沌理论的经典,也是“巴西蝴蝶扇动翅膀在美国引起德克萨斯的飓风”一说的肇始。它的形式看起来很简单:

洛伦兹方程组是基于流体力学中的Navier-Stokes方程、热传导方程和连续性方程构建的,属于耗散系统。相空间中,耗散系统的终态都将收缩到吸引子的状态上。但对平庸吸引子来说,无论初值如何,终值只有一个,而奇异吸引子却是无数个点的集合,对初值极端敏感。如洛伦兹当年只是忽略了小数点4位以后的数值,得到的结果就有了相当大的偏差,甚至是完全相反。

在洛仑兹原始的工作中,x表示的是对流的翻动速率,y正比于上流与下流液体温差,z是垂直方向的温度梯度。式中三个参数\sigma(Prandtl数)、\beta\rho(Rayleigh数)可任取大于0的数值。常用的组合是\sigma=10\beta=8/3,而令\rho取不同数值。\rho=28时有混沌现象,奇异吸引子出现,此时系统的演化轨迹如下图所示:

Lorenz Attactor

这一图案颇似蝴蝶展翅,所谓混沌理论的“蝴蝶效应”之得名据说也与此吸引子的形状有关。该系统中x、y、z这3个方向数值随时间的演化如下图,其中黑线为x轴变化情况,红线为y轴变化情况,蓝线是z轴变化情况(积分步长\pi/10)。

固定另2个参数,\rho的不同取值则决定了系统的不同性质。下面四图分别为该参数取值1、10、14与99.6时的演化轨迹:

\rho=1

\rho=10

\rho=14

\rho=99.6

由图中可见,在\rho较小(如取1)的情况下,系统是稳定的,演化到两个吸引点中的一个。随着\rho的增加,系统趋于复杂,在\rho=28时达到混沌状态。\rho=99.6的情况是所谓的圆环结(torus knot)。如果单独看以上三种情况x、y、z坐标的演化,可能会更清楚一些:

左上:\rho=1;右上:\rho=10;左下:\rho=14;右下:\rho=99.6

Paul Bourke作出过洛伦兹吸引子的3D图象,并发表在2000年8月31日的Nature杂志上:

3D Lorenz Attactor

另外此君还提供了一段洛伦兹吸引子的音乐,乐谱片段如下,制作原理不详,只知道3个轴的坐标分别用3种乐器表示。这段midi听起来感觉比较怪异,有兴趣的可以下载听一听。

Lorenz Attactor Music

洛伦兹吸引子的行为可以用一个“水轮”模拟,该装置的主体是可旋转的竖直轮盘,轮盘周围装有一圈可以漏水的杯子,从轮子上方注水至杯中,调节注水速度,达到某一速度时,轮盘的转动出现混沌。这一模型是Willem Malkus和Lou Howard于1970年前后提出的,在2005底召开的荷兰物理教师年会上,Planeten Paultje展示了实物。

waterwheel

Planeten Paultje的水轮装置

再说所谓混沌。如庞加莱在《科学与方法》一书中所说,“初始条件的微小差异有可能在最终的现象中导致巨大的差异”,“预言变得不可能”。更准确的定义干脆照抄《天体力学基础》的教材好了:“若初始值x_0有一点小偏差,则因这一点偏差引起的轨道未来预报的不准确将会指数增长。”混沌的判据是最大Lyapunov指数,该指数大于0则系统混沌,至于具体计算再扯下去必然公式连篇,故不详谈。

其实混沌理论也不一定要求系统形式上的复杂性,比如描述洛伦兹吸引子的方程组就很简单。关键是,在简单的表象后面莫测的复杂。如今在混沌的研究中,计算机起了很大的作用。至于实际应用,混沌起作用的地方还是很多的,如天气系统、N体运动中的轨道,乃至经济问题……

上学期在“天体力学基础”课程学习中,我编写过一个绘制洛伦兹吸引子图形的小程序,数据输出后用绘图软件读取画图即可,以上各插图都是用这个程序得出的(自己用的是IDL),放在这里,有兴趣的可以运行一下试试。

 

参考资料:

[1] 从巴西的蝴蝶到德克萨斯的飓风
[2] The Lorenz Attractor in 3D
[3] 混沌理论—在混沌中有序吗?
[4] 分岔与奇怪吸引子

come from: http://bzhang.lamost.org/website/archives/lorenz_attactor/

  评论这张
 
阅读(793)| 评论(1)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017